X-ray attenuation coefficients of Gd compounds in the K edge region at different energies

Ferdi Akman1*, Mehmet F. Turhan2, Mustafa R. Kaçal3, Rıdvan Durak4 and Abdulhalik Karabulut4

1Bingöl University, Vocational School of Technical Science, Department of Electronic Communication Technology, 1200, Bingöl.

2Afyon Kocatepe University, Atatürk Vocational School of Health Service, Department of Medical Imaging Techniques, 03200, Afyon.

3Giresun University, Science and Art Faculty, Department of Physics, 28000, Giresun.

4Ataūrk University, Science Faculty, Department of Physics, 25240, Erzurum.

* fakman@bingol.edu.tr

The total mass attenuation coefficients for element Gd and compounds Gd\textsubscript{2}O\textsubscript{3}, Gd\textsubscript{2}(CO\textsubscript{3})\textsubscript{2}.H\textsubscript{2}O, Gd\textsubscript{2}(C\textsubscript{2}O\textsubscript{4}).H\textsubscript{2}O and Gd\textsubscript{2}(SO\textsubscript{4})\textsubscript{3} were measured at the different energies between 39.522-57.142keV range by using secondary excitation method. Sm, Eu, Gd, Tb, Dy, Ho and Er were chosen as secondary exciter. 59.54 keV gamma rays emitted from an Am-241 annular source were used to excite secondary exciter and K\(\alpha_2\), K\(\alpha_1\), K\(\beta_1\) and K\(\beta_2\) lines emitted of secondary exciter were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. The validity of mixture rule was discussed around the absorption edge for compounds. Obtained values were compared with theoretical values.

\textbf{Keywords:} Total mass attenuation coefficient, EDXRF, Mixture rule.