2nd International Hydrogen Technologies Congress

March 15-18, 2017
Çukurova University, Adana, Turkey

ABSTRACT BOOK

EDITORS
İbrahim DİNÇER
Adnan MIDİLLİ
Mehmet KARAKİLÇİK

Adana
2017
ISBN: 978-605-66381-1-4

www.uhtek2017.org
COMMITTEES

Honorary Chairs
Veziroglu, T.N. / USA
Kibar, M. / Rector/CU/Turkey

General Chair
Dincer, I. / Canada/Turkey

Congress Chair
Karakilçık, M. / Turkey

Technical Chair
Midilli, A. / Turkey

Executive Committee
Dincer, I. / HTA/Turkey
Eroğlu, I. / HTA/Turkey
Karaosmanoglu, F. / HTA/Turkey
Kargi, F. / HTA/Turkey
Midilli, A. / HTA/Turkey
Solmaz, R. / HTA/Turkey
Tuncer, G. / HTA/Turkey
Yazıcı, S. / HTA/Turkey

Local Advisory Board
Apak, S. / Turkey
Ata, A. / Turkey
Aydin, K. / Turkey
Basıbüyük, M. / Turkey
Bayrakceken, A. / Turkey
Buyukalaca, O. / Turkey
Colpan, C.O. / Turkey
Devrim, Y. / Turkey
Gumuş, C. / Turkey
Kaval, Y. / Turkey
Kardas, G. / Turkey
Paksoy, H.O. / Turkey
Serin, S. / Turkey
Sahin, A.D. / Turkey
Sahin, B. / Turkey
Şahin, M. / Turkey
Tuncer, G. / Turkey
Yazıcı, B. / Turkey
Yazıcı, S. / Turkey
Yılmaz, T. / Turkey

Local Organizing Committee
Akbulut, U. / Turkey
Çilicogulları, M. / Turkey
Erden, M. / Turkey
Kalinci, Y. / Turkey

International Scientific Board
Veziroğlu, T.N. / USA
Agar, E. / USA
Akansu, S. / Turkey
Ayas, N. / Turkey
Avaça, L.A. / Brazil
Azbar, N. / Turkey
Baykara, S. / Turkey
Bolcich, J.C. / Argentina
Demirci, U. / France
Dewi, E.L. / Indonesia
Dincer, I. / Canada
Dogan, F. / USA
Eljirushi, G.S. / Libya
Eroğlu, I. / Turkey
Goltsov, V.A. / Ukraine
Goswani, Y. / USA
Gorgun, H. / Turkey
Guvenc, Z.B. / Turkey
Hamdullahpur, F. / Canada
Hart, D. / Switzerland

Hepbasli, A. / Turkey
İbrahimoglu, B. / Turkey
Ilbas, M. / Turkey
Kadirgan, F. / Turkey
Kaplan, Y. / Turkey
Karakoc, H. / Turkey
Karaosmanoglu, F. / Turkey
Kargi, F. / Turkey
Koca, A. / Turkey
Koylu, U.O. / USA
Kambur, E.C. / USA
Li, X. / Canada
Maio, Z.Q. / China
Marchetti, C. / Italy
Mench, M.M. / U.S.A
Midilli, A. / Turkey
Miranda, P.E. / Brazil
Naterer, G.F. / Canada
Osmanoglu, B. / Turkey
Ozkar, S. / Turkey

Ozkaya, A.R. / Turkey
Ozturk, T. / Turkey
Piskin, S. / Turkey
Pollet, B. / South Africa
Ramenskiy, A.Y. / Russia
Sheffield, J.W. / USA
Solmaz, R. / Turkey
Soo Oh, B. / S. Korea
Srivastava, O.N. / India
Sahin, Ö. / Turkey
Sahin, S. / Turkey
Uchida, H. / Japan
Stolten, D. / Germany
Veziroğlu, E.A. / USA
Veziroğlu, A. / USA
Yanik, J. / Turkey
Yıldız, I. / Canada
Yurum, Y. / Turkey
[Abstract:0130]

Fabrication, Characterization and Hydrogen Evolution Activity of Three-Dimensional Nickel Nanodomes

Bedia Semra Taşçı, Handan Yüksel, Ramazan Solmaz
Bingöl University, Science and Letters Faculty, Chemistry Department, 12000 Bingöl, Turkey

Three-dimensional (3D) Ni nanodomes (NiNDS) were fabricated and characterized for alkaline water electrolysis. The nanodomes were prepared by a combined method of soft lithography-nanosphere lithography and physical vapor deposition (PVD) using polydimethylsiloxane (PDMS) as template. The 3D-NiNDS nanostructures were characterized using scanning electron microscopy and atomic force microscopy. Their hydrogen evolution activities were tested in 6 M KOH solution using electrochemical techniques. The similar studies were repeated for bulk Ni for comparison. The data obtained showed that well-structured and homogenously distributed NiNDS could be fabricated using this combined method. The NiNDS perform excellent hydrogen evolution activity. The higher activity of the domes was related to their large real surface area and good intrinsic electrochemical activity of Ni.

Acknowledgements: This study was supported by Bingöl University Scientific Research Projects Coordination Unit (BÜBAP) (Project Number: BAP-FEF.2016.00.008). The authors are greatly thankful to BÜBAP for financial supporting. The authors also would like to thank to Assoc. Prof. Dr. Mehmet Kahraman for his kind helps to prepare PDMS templates and Bingöl University Central Laboratory for characterization measurements.

Keywords: Three-dimensional nickel nanodomes, nanostructures, electrolysis, hydrogen evolution.

[Abstract:0136]

Bimetallic Nanoparticles for Alcohol Oxidation

Hilal Demir Kivrak¹, Özlem Gökdoğan Şahin²
¹Department of Chemical Engineering, Yüzüncü Yıl University, Van / Turkey
²Department of Chemical Engineering, Selcuk University, Konya / Turkey

Metal nanoparticles (NPs) have investigated in the last decade due to their chemical, physical and mechanical properties as well as their potential applications in catalysis, biology, electronics and optics. Alloying of metals is an effective way of developing new materials that have better technological usage than their monometallic ones. Alloy nanoparticles display different structural and physical properties than bulk samples. Bimetallic alloy nanoparticles received great attention because of nanoparticle catalytic activity depends on their structural features. These nanoparticles could display both the single properties of two metals and new properties due to the synergy between two metals. Moreover, these bimetallic nanoparticles could be in a core shell structure or alloy form depending on the preparation method. Core-shell bimetallic nanoparticles can reduce the noble shell metal and retain similar or superior catalytic activity compared to bulk alloy catalysts. Shape and size of mono and bimetallic nanoparticles are strictly dependent on the preparation methods and conditions and affects the physicochemical properties of synthesized material. Electronic structure of nanoparticles could be tuned by synthesizing core-shell structured nanoparticles, leading to produce nanoparticles having controlled shape, size, and structure. It is possible to tune electronic, crystal and surface structure of the nanocatalyst by employing effective nanocatalyst preparation methods. Various methods have been employed to obtain different classes of core-shell nanoparticles, being one of them the dendrimer template route. It is one of the most useful methods to control the particle size, compositions, and structures. This method consists of two main steps: mixing the metal ions with dendrimer and chemical reduction. This method is the best method for preparing small catalytically active nanoparticles. In the present study, the application of palladium bimetallic alloy nanoparticles as electrocatalysts and the comparison of the electrocatalytic activity of alloy and core-shell structures of different bimetallic catalysts for electro-oxidation of alcohol oxidation has been discussed.

Keywords: Bimetallic nanoparticles, alcohol oxidation, core-shell catalysts